

News&Views

Enhanced oxygen reduction through axial chlorine engineering of p-block antimony atomic sites

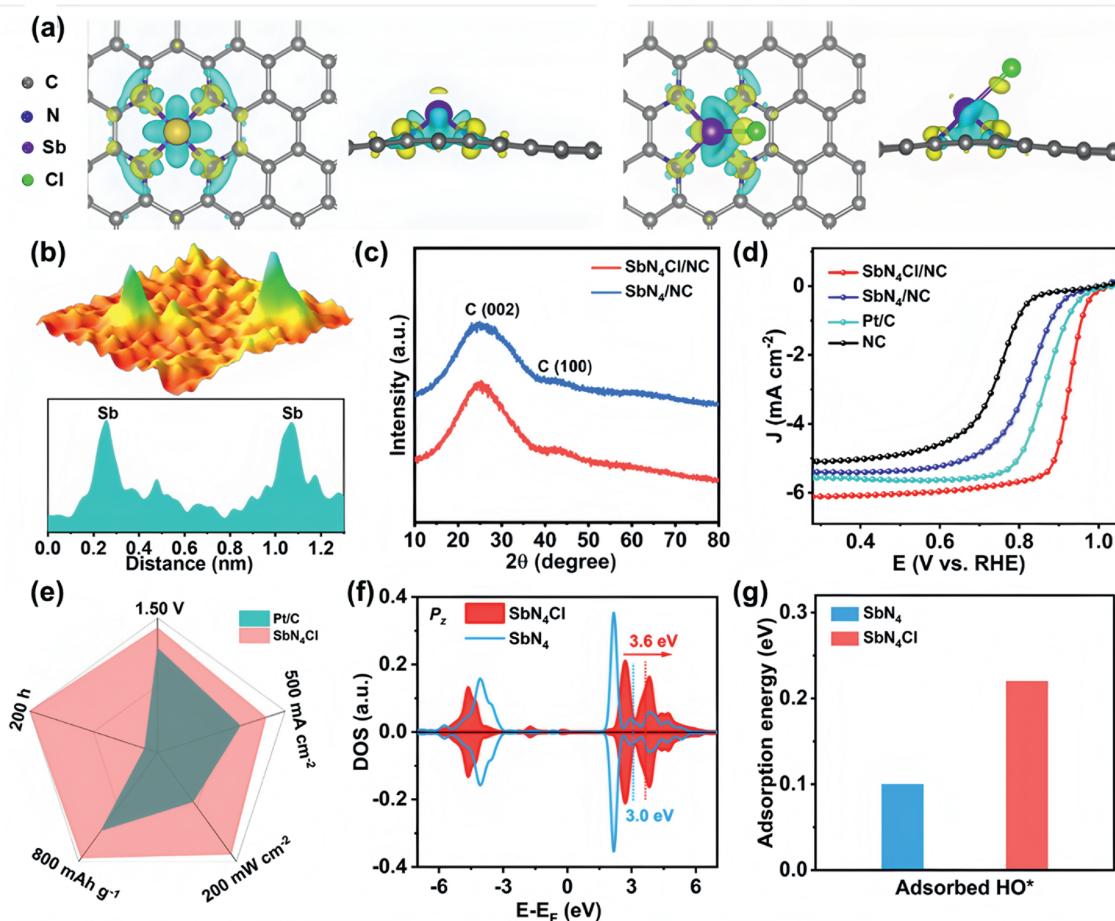
The oxygen reduction reaction (ORR) is a fundamental electrochemical process in fuel cells and metal-air batteries, playing a crucial role in energy storage and conversion. Although Pt catalysts perform well, their scarcity and high-cost limit large-scale application. Therefore, the development of non-precious metal catalysts has become a major research focus [1,2]. Atomically dispersed 3d transition metals (such as Fe, Co, Mn, and Cu) coordinated with nitrogen-doped carbon (M–N–C structures) exhibit high catalytic activity and excellent atomic utilization. However, M–N–C single-atom catalysts (SACs) with d-electron-rich metal centers often undergo Fenton reactions, which may corrode the carbon substrate, ionomers, and polymer membranes during practical operation [3]. Therefore, designing novel SACs that can suppress Fenton reactions while enhancing reaction stability is urgently needed. Unlike 3d transition metals, main-group metals possess closed d-electron shells, and their negligible interaction with hydrogen peroxide makes them intrinsically Fenton-inactive. Nevertheless, due to the lack of open d orbitals for effective interaction with reaction intermediates, main-group metal centers generally exhibit poor surface catalytic activity for electrochemical reactions such as ORR. In fact, the intrinsic activity of single-atom catalytic sites is closely related to their electronic structure, which can be precisely tuned by manipulating the coordination environment of the metal center [4]. Therefore, rational regulation of the coordination structure in main-group metal SACs to improve ORR performance, along with elucidating the atomic-scale catalytic mechanisms, has emerged as a critical scientific challenge.

In a recent study published in the *Journal of the American Chemical Society*, Li, Chen, Yang and co-workers reported an Sb SAC with an SbN₄–Cl configuration synthesized via a molten chloride salt-assisted pyrolysis strategy, which markedly enhanced the ORR performance of main-group metals [5]. In this study, ZIF-8 was employed as a sacrificial template, into which Sb source was introduced via electrostatic adsorption. Meanwhile, Cl atoms were incorporated through molten chloride salt-assisted pyrolysis to enable axial coordination, thereby yielding the SbN₄Cl/NC catalyst (Fig. 1(a)). Transmission electron microscopy and high-angle annular darkfield scanning images revealed that the catalyst retained the rhombic dodecahedral morphology of ZIF-8, exhibited a porous surface, and contained atomically dispersed Sb species (Fig. 1(b)). X-ray diffraction patterns exhibited only the (002) and (100) peaks attributed to graphitic carbon at 24° and 43°, with no observable Sb-related crystalline peaks, thereby confirming the atomic dispersion of Sb species (Fig. 1(c)). X-ray photoelectron spectroscopy confirmed the existence of Sb–N and Sb–Cl bonds. Moreover, the observed shift in Sb 3d binding energy indicated that the valence state of Sb ranged from 0 to +3, with the axial Cl coordination leading to an increased oxidation state relative to SbN₄Cl/NC. In addition, X-ray absorption near-edge structure spectroscopy and extended X-ray absorption fine structure analyses elucidated the local coordination

environment at the atomic scale, confirming that the introduction of axial Cl preserved the Sb–N₄ framework and resulted in the formation of a five-coordinated SbN₄Cl configuration.

Electrochemical data provide clear and compelling evidence for elucidating the structure-activity relationship of the catalyst. Firstly, the ORR performance of SbN₄Cl/NC was systematically evaluated under alkaline conditions. Compared with SbN₄/NC and commercial Pt/C catalysts, SbN₄Cl/NC exhibited remarkable catalytic activity, with onset and half-wave potentials ($E_{1/2}$) of 1.03 and 0.921 V, respectively, a high kinetic current density of 16.95 mA cm⁻², and a low Tafel slope of 56 mV dec⁻¹ (Fig. 1(d)). Koutecky-Levich and rotating ring-disk electrode measurements confirmed a near four-electron transfer pathway ($n \approx 3.98$) and a low H₂O₂ yield (< 4%), indicating excellent selectivity. The catalyst also demonstrated the lowest charge transfer resistance and a relatively high electrochemical active surface area ($C_{dl} = 10.25$ mF cm⁻²), along with outstanding methanol tolerance and durability, with only a loss of 4 mV in $E_{1/2}$ after 10,000 cycles. Using 3,3',5,5'-tetramethylbenzidine as a probe for reactive oxygen species, the absorbance of SbN₄Cl/NC at 652 nm was significantly lower than that of the Fe SAC, indicating that SbN₄Cl/NC exhibited negligible Fenton reaction activity. The high stability of SbN₄Cl/NC was attributed to the synergistic effect of the efficient four-electron reduction pathway and the suppressed Fenton reaction activity. *In situ* Raman spectroscopy showed that SbN₄Cl/NC could detect key ORR intermediates at higher potentials and more efficiently reduce/desorb OH species. Additionally, SbN₄Cl/NC also exhibited excellent ORR activity in 0.1 M HClO₄, delivering an $E_{1/2}$ of 0.780 V, which was higher than that of SbN₄/NC (0.688 V). However, compared with Pt/C ($E_{1/2} = 0.837$ V), the $E_{1/2}$ of SbN₄Cl/NC still showed a certain gap. Furthermore, it exhibited a lower Tafel slope (57 mV dec⁻¹) and an electron transfer number of approximately 3.96, confirming a highly efficient four-electron pathway. Moreover, SbN₄Cl/NC exhibited excellent stability in acidic electrolytes, with only an 11 mV $E_{1/2}$ decrease after 5000 cycles.

The superior performance is attributed to electronic structure modulation induced by the axial chlorine ligand, which effectively weakens the adsorption energy of HO* intermediates, thereby significantly enhancing catalytic activity and durability. The practical performance of SbN₄Cl/NC as the air cathode catalyst in zinc-air batteries was further evaluated. The assembled battery exhibited a high open-circuit voltage (1.49 V), a peak power density of 193 mW cm⁻², a specific capacity of 793 mAh g_{Zn}⁻¹, and an energy density of 1052 Wh kg_{Zn}⁻¹ (Fig. 1(e)). Additionally, the battery based on SbN₄Cl/NC demonstrated long-term cycling stability exceeding 200 h, significantly outperforming the Pt/C-based battery.


Density functional theory calculations revealed the regulatory mechanism of axial Cl on the ORR performance of SbN₄Cl/NC catalyst. The axial Cl induces significant changes in the electronic distribution of

<https://doi.org/10.1016/j.cjsc.2025.100732>

Received 23 August 2025; Received in revised form 11 September 2025; Accepted 14 September 2025

Available online 18 September 2025

0254-5861/© 2025 Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Fig. 1. (a) Charge density difference of SbN₄ and SbN₄Cl. (b) Intensity surface profile and intensity line profile taken from the HAADF-STEM image. (c) XRD patterns of SbN₄Cl/NC and SbN₄/NC. (d) ORR polarization curves of SbN₄Cl/NC, SbN₄, commercial Pt/C, and NC. (e) Comparison of the performance metrics of the Zn-air battery based on SbN₄Cl/NC and Pt/C. (f) PDOS plot of Sb in SbN₄ and SbN₄Cl as well as the corresponding P_z -band center. (g) Adsorption energy of HO* on SbN₄ and SbN₄Cl. Adapted with permission from Ref. [5]. Copyright©2025, American Chemical Society.

Sb atoms, enhancing the electronic density at the Fermi level and facilitating electron transfer (Fig. 1(f)). Meanwhile, the introduction of Cl increases the adsorption energy of Sb toward the HO* intermediate, weakening their interaction. This reduces the ORR overpotential from 0.86 to 0.73 eV, thereby improving catalytic activity and efficiency (Fig. 1(g)). These results demonstrate that axial Cl effectively modulates the electronic structure of the catalyst, promoting the ORR process.

In summary, Li, Chen, Yang and co-workers successfully constructed atomically dispersed Sb active sites on the hierarchical mesoporous carbon framework *via* a molten chloride salt-assisted pyrolysis strategy, forming a unique SbN₄-Cl coordination structure. This innovative design effectively regulated the electronic structure of the Sb center through the introduction of an axial chlorine ligand, optimizing the p-band distribution and significantly reducing the adsorption energy of key intermediates such as HO*, thereby enhancing the kinetic rate and overall catalytic efficiency of the ORR. This study not only overcomes the inherent limitation of low catalytic activity commonly observed in main-group metal catalysts but also greatly expands their application prospects in energy conversion systems such as fuel cells and metal-air batteries. Moreover, it provides new theoretical guidance and design strategies for tuning the p-band structure of main-group metal SACs through precise coordination engineering. However, the air electrode in zinc-air batteries is simultaneously governed by the oxygen evolution reaction (OER) and ORR during charge-discharge cycling. Therefore, the development of main-group metal catalysts with bifunctional ORR and OER activity in both acidic and alkaline environments is essential. In

addition, from a practical perspective, substantial improvements in the long-term cycling stability and overall durability of electrode materials in zinc-air batteries are imperative.

CRediT authorship contribution statement

Wenjie Zhang: Writing – original draft. Jiong Zhou: Writing – review & editing.

Declaration of competing interest

The authors declare no competing interests.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22101043), the Fundamental Research Funds for the Central Universities (N25LPY027, N2205013, N232410019, N25ZLL045), Natural Science Foundation of Liaoning Province (2023-MSBA-068), the Opening Fund of State Key Laboratory of Heavy Oil Processing (SKLHOP202203006), the Key Laboratory of Functional Molecular Solids, Ministry of Education (FMS2023005) and Northeastern University. Special thanks are due for the instrumental and data analysis from the Analytical and Testing Center, Northeastern University.

References

[1] K.-M. Zhao, D.-X. Wu, W.-K. Wu, J.-B. Nie, F.-S. Geng, G. Li, H.-Y. Shi, S.-C. Huang, H. Huang, J. Zhang, Z.-Y. Zhou, Y.-C. Wang, S.-G. Sun, Identifying high-spin hydroxyl-coordinated Fe^{3+}N_4 as the active centre for acidic oxygen reduction using molecular model catalysts, *Nat. Catal.* 8 (2025) 422–435.

[2] W. Zhang, Q. Dong, Y. Zhao, W. Yang, J. Chen, F. Xi, Y. Li, X. Liu, J. Zhou, BODIPY-based supramolecular complexes as oxygen reduction reaction and hydrogen evolution reaction bifunctional electrocatalysts for zinc-air battery, *Chem. Eng. J.* 507 (2025) 160369.

[3] C.H. Choi, H.-K. Lim, M.W. Chung, G. Chon, N.R. Sahraie, A. Altin, M.-T. Sougrati, L. Stievano, H.S. Oh, E.S. Park, F. Luo, P. Strasser, G. Dražić, K.J.J. Mayrhofer, H. Kim, F. Jaouen, The Achilles' heel of iron-based catalysts during oxygen reduction in an acidic medium, *Energy Environ. Sci.* 11 (2018) 3176–3182.

[4] M. Yan, H. Yang, Z. Gong, J. Zhu, C. Allen, T. Cheng, H. Fei, Sulfur-tuned main-group Sb–N–C catalysts for selective 2-electron and 4-electron oxygen reduction, *Adv. Mater.* 36 (2024) 2402963.

[5] Y. Hu, S. Niu, Z. Zhang, T. Chao, T. Zhao, G. Yu, F. Zhou, X. Liang, H. Jin, Z. Yang, D. Wang, W. Chen, Y. Li, Axial chlorine engineering of p-block antimony atomic sites boosts oxygen reduction, *J. Am. Chem. Soc.* 147 (2025) 21231–21240.

Wenjie Zhang^a, Jiong Zhou^{a,b,*}

^aDepartment of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China

^bKey Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China

* Corresponding author. Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
E-mail address: zhoujiong@mail.neu.edu.cn (J. Zhou).