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ABSTRACT  The combination of hologram quantitative structure-activity relationship (HQSAR) and consensus 

modeling was employed to study the quantitative structure-property relationship (QSPR) model for calculating the 

aqueous hydroxyl radical oxidation reaction rate constants (kOH) of organic micropollutants (OMPs). Firstly, 

individual HQSAR model were established by using standard HQSAR method. The optimal individual HQSAR 

model was obtained while setting the parameter of fragment distinction and fragment size to “B” and “3~6” 

respectively. Secondly, consensus HQSAR model was established by building the regression model between the kOH 

and the hologram descriptors with consensus partial least-squares (cPLS) approach. The obtained individual and 

consensus HQSAR model were validated with a randomly selected external test set. The result of external test set 

validation demonstrates that both individual and consensus HQSAR model are available for predicting the kOH of 

OMPs. Compared with the optimal individual HQSAR model, the established consensus HQSAR model shows 

higher prediction accuracy and robustness. It is shown that the combination of HQSAR and consensus modeling is 

a practicable and promising method for studying and predicting the kOH of OMPs.  

Keywords: QSPR, hologram QSAR, consensus modeling, organic micropollutants, hydroxyl radical, rate 

constant; DOI: 10.14102/j.cnki.0254–5861.2011–3083 

 

1  INTRODUCTION 

 

Hologram quantitative structure-activity relationship 

(HQSAR) is an ingenious and efficient quantitative 

structure-property relationship (QSPR) technique, which 

proposes a specialized fragment fingerprint, known as 

molecular hologram (MH), as the structural descriptor to 

build a QSPR model. Because the HQSAR model is 

easier-to-built than many other QSPR models, as well as 

possessing comparable prediction accuracy, it has been 

successfully applied to a number of QSPR researches in the 

fields of biology[1, 2], pharmacology[3-6], chemistry[7, 8], 

environmental science[9, 10], etc. Traditionally, HQSAR 

method builds individual regression models between 

molecular properties and hologram descriptors by using 

partial least-squares (PLS) regression. As is known to all, 

individual regression models tend to underfitting or 

overfitting[11]. By contrast, consensus modeling method can 

overcome this shortcoming to a great extent through 

integrating several individual models[12-14]. The predictive 

accuracy and robustness of regression models could be 

improved by consensus modeling. As a powerful and 

reliable modeling strategy, consensus modeling has been 

successfully applied to lots of research fields, such as QSPR  
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modeling, spectral analysis, machine learning, artificial 

intelligence and so on[15-17]. Obviously, it is necessary and 

advisable to introduce consensus modeling into HQSAR 

modeling in order to build more accurate and robust models.  

Organic micropollutants (OMPs) as a group of 

compounds that cover a wide array of physical-chemical 

properties have been identified as emerging contaminants 

due to the possible threats to ecological environments. In 

recent decades, contamination of OMPs on surface water has 

received increasingly scientific and public awareness[18]. 

OMPs has the characteristics of low concentration and high 

toxicity, which can cause direct or potential harm to aquatic 

ecosystems and human health. Therefore, with the progress 

of science and the enhancing attention about human health, 

technology is needed to remove these pollutants from 

wastewater effluents prior to the discharge of wastewater to 

the environment. Recently, ozone has been used to process 

OMPs in wastewater. According to Hoigne and Bader[19], 

there are two ways for ozone reacting with organic 

pollutants in water: (1) direct reactions; (2) indirect reactions 

of hydroxyl radicals produced by the process of ozone 

decomposition. The rate constants of direct reaction could be 

easily determined by experiments
[20]

. However, due to the 

complexity of analytical methods, experimentally determi- 

ning the aqueous oxidation reaction rate constants of 

hydroxyl radical with OMPs is always a time-consuming, 

costly and hard task[21-25]. Hence, the QSPR method has been 

extensively used to predict the hydroxyl radical rate constant 

of the contaminants by relating the properties (rate constant) 

of contaminants with their molecular structures[26-30]. Several 

2D-QSPR models have been proposed in many literatures 

for studying the rate constant of hydroxyl radical on the 

basis of quantum chemical or topological descriptors[31-33]. 

However, the modeling processes of these models are 

always time-consuming and complex, and it is always 

meaningful to improve the accuracy and robustness of these 

models. Thus, the QSPR model of the aqueous hydroxyl 

radical oxidation reaction rate constant of OMPs (kOH) was 

studied in this work, based on the HQSAR and consensus 

modeling method. 

 

2  EXPERIMENTAL 

 

2. 1  Data set and software 

The experimental aqueous hydroxyl radical oxidation 

reaction rate constants of the investigated 83 OMPs was 

collected from reference[34]. The 83 OMPs were randomly 

divided into two sample sets, training set and test set, in the 

light of 2:1. The training set, which was used to establish and 

optimize the HQSAR model, includes 55 samples. The test 

set, which was utilized to assess the prediction performance 

of the developed QSPR models, of course comprises the 

other 28 samples.  

All the computations were carried out in an i5-4258U/4G- 

RAM personal computer. The computations related to 

HQSAR modeling were performed in SYBYL-X 2.0 

software (Certara, U.S.). Other computations were perfor- 

med with the program developed by our research team. 

2. 2  Model assessment 

Several statistical indices, including root mean square 

error (RMSE), squared correlation coefficient of cross 

validation ( 2
cvq ), squared correlation coefficient of external 

( 2
extq ), concordance correlation coefficient (CCC), predictive 

squared correlation coefficient ( 2
F2Q

 
and

 
2
F3Q ), 2

mr  and 

2
mr

[35-39], were jointly used to assess the prediction 

performance of the generated models. 

Eqs. 1 and 2 show the definition of CCC, 2
F2Q

 
and

 
2
F3Q :  
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In these equations, yi represents the experimental value of 

each sample, iŷ
 

denotes the predicted value of each sample, 

y
 

means the average of all experimental values, ŷ is
 
the 

average of all predicted values, nTR is described as the 

number of samples in training set, nEXT stands for the 

number of samples in external test set, PRESS denotes the 

predictive error sum of squares, and TSS is regarded as the 

sum of squares of prediction errors of all the samples. 

Chirico et al.[36-39] suggested that for an acceptable QSPR 

model, the value of CCC should be higher than 0.85, 

2
F2Q and 2

F3Q higher than 0.70, 2
cvq

 
and 2

extq  higher than 

0.50. 

The definition of 2
mr  and 2

mr  is shown in Eq. 3: 
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Here, r2

 
and r0

2 stand for the determination coefficients of 

the regression equation between the predicted and 

experimental values of test set, compelling respectively the 

origin of the axis (r0
2) or not (r2). When calculating (rm

2, r2, 

r0
2) and (rm

’2, r’2, r0
’2), the experimental values were used as 

ordinate and abscissa, respectively. Roy et al.[40] suggested 

that the value of 2
mr  

should be higher than 0.65 and 2
mr  

should be lower than 0.2, for an acceptable QSPR model. 

2. 3  HQSAR  

HQSAR is an excellent 2.5D-QSPR approach proposed by 

Hurst et al.[41, 42] which contains the advantages of both 

2D-QSPR methods and 3D-QSPR methods. The notable 

advantage of HQSAR is it can rapidly and automatically 

process large data set with high prediction accuracy and 

statistical quality. Compared with 3D-QSPR methods, 

conformation optimization or alignment of molecules is not 

required in HQSAR. HQSAR is an ingenious and successful 

combination of molecular hologram descriptors and PLS 

regression methods.  

MH is an extended form of molecular fingerprint, a kind 

of fragment-based descriptor which translates chemical 

structure representations into binary bit strings. It can code 

more structural information than traditional 2D molecular 

fingerprint, such as stereo-chemical structure, branching and 

cyclic fragments. All possible molecular fragments, 

including linear, branched, cyclic, and overlapping features 

within a molecule, could be contained in MH. MH is 

actually an array containing counts of molecular fragments. 

In MH, the molecular fragments are described with Sybyl 

Line Notation (SLN), a specification for explicitly 

characterizing molecular fragments, structures, structural 

libraries, reactions, formulations, molecular and reaction 

queries by using short ASCII strings.  

Two parameters, fragment distinction and fragment size, 

are used to set the type and length of MH descriptors. The 

parameter of fragment distinction defines the type of 

fragments, including atoms (A), bonds (B), connections (C), 

hydrogen atoms (H), chirality (Ch), and donor and acceptor 

atoms (DA)[43, 44]. Different types of fragments could be 

combined. For example, the default setting of fragment 

distinction is “A/B/C” in SYBYL. The parameter of 

fragment size is used to specify the length of fragments. All 

the possible fragments are generated with S atoms[45, 46]. 

Here, S is an integer between M and N. The value of M 

should be larger than 2 and smaller than N. The values of N 

is usually larger than 12 and does not exceed the number of 

atoms in the molecule. This parameter is set to “4~7” by 

default in SYBYL. After setting the parameter of fragment 

distinction and fragment size, each fragment was assigned to 

a unique integer in the range of 0～231 using a cyclic 

redundancy check (CRC) algorithm[47]. Each integer 

corresponds to a bin in an integer array of fixed length L, 

which represents the length of MH. In the HQSAR module 

of SYBYL software, L usually is one of the 12 prime 

numbers ranging from 53 to 401. The initial setting of L is 

97, 151, 199, 257, 307 and 353. The terms of molecular bit 

string fingerprint involve “0”, which usually does not have 

any useful information. In the subsequent PLS modeling step, 

the computation time may be dramatically increased with the 

increase of fingerprint length. More importantly, these null 

values may hinder the follow-up computation of PLS model. 

Therefore, it is necessary to adopt effective method for 

reducing the length of fingerprint. This reduction is achieved 

through the process called “hashing”, which allocates 

multiple fragments to the same location in a fingerprint[48].  

In general, HQSAR method consists of three main steps: 

(1) generating sub-structure fragments of each molecule in 

the data set; (2) encoding these fragments with MH 

descriptors; (3) establishing the quantitative relationship 

model between the MH descriptors and the properties of 

compounds by using PLS. The PLS model with the highest 

value of 2
cvq  is usually considered as the established best 

HQSAR model. 

2. 4  Consensus modeling 

The idea behind consensus modeling is building a series 

of models, namely member models, with different training 

subsets, which consists of different samples randomly 

selected from one training set, and combining the eligible 

member models according to the consensus rules. A 

consensus model always contains member models with 

different prediction characteristics. The most significant 

advantage of consensus modeling is that it is able to resist 

underfitting and overfitting to a certain extent, and thus can 

improve the robustness and predictability of a regression 

model. The flow chart of consensus modeling is shown in 

Fig. 1.  
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Fig. 1.  Flow chart of consensus modeling 

 

Krogh and Vedelsby[49] proposed the prediction error 

decomposition theory of consensus models and expressed 

the theory as follows: 
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In these equations, )(xE


 denotes the average error of all 

the member models, )(xA  means the variance of the 

member models relative to the consensus model, Nm is the 

total number of member models, y represents the dependent 

variable (namely the property value) of each sample, 
iŷ  

and ŷ
 

indicate the predicted value of member models and 

consensus model respectively, and x


 represents the 

independent variables (namely the structural descriptor in 

QSAR models) of each sample. The consensus rule used in 

this study is arithmetic mean that means the predicted values 

of the Nm member models are averaged, as shown in Eq. 5.
 

According to Eq. 4a, two factors is concerned to the 

prediction error of a consensus model: )(xE


, the average 

relative error of all member models and )(xA , the variance 

of the member models relative to the consensus model. 

)(xE


 reflects the prediction accuracy of the model, and 

)(xA  shows the correlation between the member models. 

An excellent consensus model should comprise member 

models with high prediction accuracy (small prediction error, 

)(xE


) and uncorrelated member models (large prediction 

variance, )(xA ). Raising the accuracy and robustness of a 

consensus model need to decrease the difference between 

)(xE


 and )(xA . The best model will be obtained when the 

value of )(xE


 is very close to that of )(xA . Therefore, 

choosing appropriate member models is of great importance 

in consensus modeling. 

Consensus partial least squares (cPLS) is a commonly 

used consensus modeling method[12, 14, 50, 51]. Its basic idea is 

disturbing the training set by random sampling, establishing 

a series of individual PLS models, and selecting appropriate 

member models from these individual PLS models to jointly 

predict the unknown samples. The main steps of cPLS 

includes:  

(1) Setting the training subset and inspection set; 

(2) Setting the total number of individual PLS models; 

(3) Building the individual PLS models with the training 

subset, and predicting the inspection set with the obtained 

individual PLS models; 

(4) Determining whether the individual PLS model 

established in step (3) could be accepted as member model 

of the consensus model, according to the prediction results 

of inspection set;  

(5) Repeating steps (2)～ (4) to find enough eligible 

member models; 

(6) Combining the prediction result of all the member 

models according to the fusion criteria, such as calculating 

the mean value, to build the cPLS model. 

 

3  RESULTS AND DISCUSSION 

 

3. 1  Individual HQSAR model  

The two key parameters, fragment distinction and 

fragment size, were optimized in order to build acceptable 

HQSAR models. The first step is optimizing the fragment 

distinction parameter. A series of candidate HQSAR models 

were developed by setting fragment distinction to different 

values at the default fragment size of “4~7”. Training set was 

used to establish these candidate models and the statistics of 
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these models were calculated. The key statistics of the best 

eight models are listed in Table 1. The optimum model, of 

which the 2
cvq  R2 and standard error value are 0.816, 0.875 

and 1.754, respectively, was obtained by setting fragment 

distinction to “B”. Thus, we set fragment distinction to “B” 

in the followed models. Secondly, the parameter of fragment 

size was optimized. A series of HQSAR models were built 

by setting fragment size to different values, while setting the 

fragment distinction to “B”. These models were still built up 

by using the 55 samples of training set. The key statistics of 

the best eight models were calculated and listed in Table 2. 

The optimum model was obtained by setting fragment size to 

“3~6”, and the statistical parameters 2
cvq , R2 and standard 

error are 0.854, 0.915 and 1.451, respectively. This is the 

optimal individual HQSAR model of kOH. As shown in Table 

2, the optimal individual HQSAR model of kOH could be 

built when setting fragment distinction, fragment size, 

fragment length and principal components to “B”, “3~6”, 

“151” and “6” respectively. 

 

Table 1.  Statistics of the kOH Models with Different Fragment Distinctions 
 

No. 
Fragment 

distinction* 

2

cvq
 

R2 Standard error Best length PCs 

1 B 0.816 0.875 1.754 199 6 

2 
A, B, H, CH, 

DA 
0.743 0.846 1.912 307 4 

3 A, B, H, DA 0.722 0.846 1.911 199 4 

4 C, DA 0.716 0.900 1.570 151 6 

5 A, C, DA 0.699 0.870 1.775 151 5 

6 B, C 0.697 0.802 2.164 97 4 

7 A, CH, DA 0.636 0.862 1.844 151 6 

8 A 0.630 0.822 2.077 307 5 

* In this column, A, B, C, H, Ch and DA respectively represent “atoms”, “bonds”, “connections”,  

“hydrogen atoms”, “chirality” and “donor and acceptor atoms”. 

 

Table 2.  Statistical Results of the kOH Models with Different Fragment Sizes 
 

No. 
Fragment 

distinction 

Fragment 

size 

2

cvq
 

R2 
Standard 

error 
Best length PCs 

1 B 3~6 0.854  0.915 1.451  151 6 

2 B 4~5 0.821  0.909 1.498  151 6 

3 B 4~7 0.816  0.875 1.754  199 6 

4 B 2~5 0.812  0.903 1.531  97 5 

5 B 5~6 0.794  0.880 1.720  199 6 

6 B 1~4 0.788  0.894 1.618  97 6 

7 B 3~4 0.784  0.898 1.585  97 6 

8 B 5~8 0.775  0.886 1.881  199 6 

 

In order to evaluate the prediction ability of this model, 

external test set verification was carried out. The kOH of the 

samples in test set was predicted by this model. The 

predicted kOH was shown in Fig. 2, the corresponding 

statistical indices were calculated and listed in Table 3. The 

results of external test set validation show that the 

established individual HQSAR model is acceptable. That is 

to say, the hologram information is quantitatively relate to 

the kOH value of the 83 OMPs. The developed HQSAR 

model is practicable for predicting the kOH value of organic 

micropollutants. However, the 2
extq and 2

F2Q of this model 

just reaches 0.659 and 0.657 respectively, building more 

accurate QSPR models is still meaningful.  
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Table 3.  Statistics of the Individual and Consensus HQSAR Model 
 

Parameters Individual HQSAR model Consensus HQSAR model 

RMSEP 2.531 2.181 

CCC 0.865 0.895 

2
extq  0.659 0.747 

2
F2Q  0.657 0.746 

2
F3Q  0.703 0.779 

2
mr

 0.727 0.780 

2
mr

 0.136 0.114 

 

 

(a)                                                            (b) 

Fig. 2.  Predicted kOH versus experimental kOH: (a) individual HQSAR model, (b) consensus HQSAR model.  

“▲” indicates the samples of training set, and “▼” are those of the test set 

 

3. 2  Consensus HQSAR model  

In this section, cPLS was employed to build consensus 

HQSAR model. Correspondingly, the 55 samples of training 

set was randomly divided into a training subset and an 

inspection subset, according to the ratio of 2:1. The training 

subset, which was used to build the regression model, 

comprises of 37 samples and the inspection subset, which 

was used to optimize the number of member models, 

includes the rest 18 samples.  

The consensus model was built with cPLS regression 

method. All the member HQSAR models of the consensus 

model were established by using the training subset as the 

calibration set of PLS, while setting the fragment distinction 

and fragment size to “B” and “3~6” respectively. Generally, 

2
cvq > 0.80 is commonly used as the acceptance standard of 

member models in cPLS, by considering the diversity and 

prediction ability of the member models. Thus, we chose the 

PLS regression model whose 2
cvq  is larger than 0.80 as the 

member models. The cPLS method should be built by proper 

member models, which have positive effects on the model 

stability and accuracy. It is necessary to optimize the number 

of member models of a cPLS model. A series of cPLS 

models were built with different number and combination of 

the member PLS models, of which 2
cvq  is greater than 0.80. 

The kOH of the samples in inspection set was then predicted 

with these cPLS models and the RMSE for the inspection set 

was calculated. The prediction result demonstrates that when 

the number of models less than 60, the RMSE of the 

inspection set is unstable and continuously decreasing; when 

the number of member models is larger than 60, the RMSE 

of the inspection set has tended to stable and decreased to 

2.03. Consequently, the consensus HQSAR model was 

established with 60 member models. Namely, the predicted 

kOH of OMPs of the developed cPLS model is actually the 

average value of the 60 selected member models. Then, the 

kOH of the samples in test set were predicted to assess the 

prediction ability of the consensus model. The prediction 

result is shown in Fig. 2 and the corresponding statistical 

indices are listed Table 3. Fig. 2 and the indices listed in 

Table 3 demonstrate that this model is more accurate and 

robust than the individual HQSAR method. It is 

demonstrated that the QSPR model for the kOH of OMPs can 

be established through HQSAR method, and the robustness 
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and predictability of the model can be improved through the 

consensus modeling. 

 

4  CONCLUSION 

 

The QSPR models for predicting the aqueous oxidation 

reaction rate constants of organic micropollutants with 

hydroxyl radical were successfully established by using 

HQSAR approach combined with consensus modeling 

method. The result of external test set validation indicates 

that both individual HQSAR model and consensus HQSAR 

model is practicable for describing the quantitative 

relationship between the structural information and kOH of 

the investigated organic micropollutants. Compared with 

individual HQSAR model, the established consensus 

HQSAR model has higher prediction accuracy and 

robustness. It is demonstrated that consensus HQSAR 

modeling is a practicable and promising approach for 

improving the accuracy and robustness of HQSAR model. 

And the established consensus HQSAR model is an 

easy-to-use and accurate model for studying and predicting 

the aqueous kOH of the organic micropollutants oxidation 

reactions.  
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