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ABSTRACT   Based on the three-dimensional structures of the compounds, the structures of 48 ester compounds 

were expressed parametrically. Through multiple linear regression and partial least-squares regression, the 

relationship models between ester compound structures and aquatic toxicity log(1/IGC50) were established. The 

correlation coefficients (R2) of the models were 0.9974 and 0.9940, and the standard deviations (SD) were 0.0469 

and 0.0646, respectively. The stability of the models was evaluated by the leave-one-out internal cross-test. The 

correlation coefficients (RCV
2) of the models of interactive tests were 0.9939 and 0.8952, and the standard deviation 

(SDCV) was 0.0715 and 0.0925, respectively. The external samples were used to test the predictive ability of the 

models, and the correlation coefficients (Rtest
2) of the external predictions were 0.9955 and 0.9955, and the standard 

deviations (SDtest) were 0.0720 and 0.0716, respectively. The molecular structure descriptors could successfully 

represent the structural characteristics of the compounds, and the built models had good fitting effects, strong 

stability and high prediction accuracy. The present study has a good reference value for the study of the 

structure-toxicity relationship of toxic compounds in the environment. 
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1  INTRODUCTION  

 

Esters are one of the important high-yield compounds. 

They are often used in the production of plastics. They are 

usually found in plastic pipes, furniture, floors, car interiors, 

insect repellents and cosmetics. Methyl p-hydroxybenzoate is 

the methyl ester of p-hydroxybenzoic acid (PHBA), which is 

widely used in cosmetics, toothpaste, hair care products, 

moisturizers and deodorants. Due to the wide applications of 

esters, more and more ester compounds enter the water 

environment and cause harm to living animals and plants[1-3]. 

Comprehensive acquisition of various property parameters of 

organic compounds is of great significance for standardizing 

their production and application[4, 5]. At present, the toxicity 

of ester compounds is mainly determined by experiments, 

which wastes resources such as chemical reagents and time. 

Moreover, the number of such compounds is huge, and it is 

difficult to measure various parameters only by experimental 

means. The study of the relationship between the structures 

and properties of compounds is of great significance for 

analyzing and evaluating various properties or environmental 

behaviors of compounds, and assisting in the identification of 

compounds. The parameterized characterization of structures 

of compounds is one of the key steps to establish the 

relationships between compound structures and properties. At 

present, two-dimensional structure characterization 

methods[6-8] and three-dimensional structure characterization 

methods[9-11] are widely used. The two-dimensional structure 

characterization methods are simple and fast, but they are 

difficult to reflect the three-dimensional structure charac- 

teristics of the compounds, and cannot distinguish 

phenomena such as cis-trans isomerisms. The three-dimen- 

sional structure characterization methods are relatively 

complicated, but they can be calculated based on the 

three-dimensional structures of compound molecules and can 

distinguish various isomerism phenomena. In the present  
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study, three-dimensional structure descriptors were used to 

characterize the structures of some ester compounds, and then 

the multiple linear regression (MLR) and the partial 

least-squares regression (PLS) were used to establish the 

models of relationship between compound structures and 

toxicity, and the structural factors affecting compound 

toxicity were analyzed. This paper can provide a reference for 

the study of the structure-property relationship of ester 

compounds. 

 

2  MATERIALS AND METHODS 

 

2. 1  Experimental materials 

In the present study, two QSAR models for the modeling 

and predicting aquatic toxicity log(1/IGC50) of 48 aliphatic 

esters were proposed. The experimental toxic activities which 

show toxic effects on the Tetrahymena pyriformis protozoa 

ciliate were taken from literature[12]. The samples were 

divided into the training and test sets, and the test set samples 

were marked with "*". 

 

Table 1.  Compounds and Their Toxicity Values 
 

No. Compound log(1/IGC50) Cal.1 Err.1 Cal.2 Err.2 

1 Methyl propionate –1.6092 –1.5590 0.0502 –1.4715 0.1377 

2 Methyl acetate –1.5954 –1.5562 0.0392 –1.5655 0.0299 

3 Methyl formate –1.4982 –1.4494 0.0488 –1.5288 –0.0306 

4 Isobutyl formate –1.3081 –1.2827 0.0254 –1.2795 0.0286 

5 Ethyl acetate –1.2968 –1.3663 –0.0695 –1.4073 –0.1105 

6* Methyl butyrate –1.2463 –1.1420 0.1043 –1.2100 0.0363 

7 Propyl acetate –1.2382 –1.2242 0.0140 –1.1971 0.0411 

8 Propargyl acetate –1.1664 –1.1194 0.0470 –1.0973 0.0691 

9 Methyl-2-methylbutyrate –1.1650 –1.1455 0.0195 –1.1315 0.0335 

10 Propyl formate –1.0221 –1.0157 0.0064 –1.0858 –0.0637 

11 Ethyl propionate –0.9450 –0.9949 –0.0499 –0.9595 –0.0145 

12* Butyl formate –0.9336 –1.0219 –0.0883 –1.0213 –0.0877 

13 2-Butynyl-acetate –0.8834 –0.9355 –0.0521 –0.9029 –0.0195 

14 Allyl propionate –0.8791 –0.8433 0.0358 –0.8546 0.0245 

15 Vinyl acetate –0.8595 –0.9203 –0.0608 –0.9553 –0.0958 

16 Methyl valerate –0.8448 –0.9251 –0.0803 –0.8212 0.0236 

17 Propyl propionate –0.8148 –0.801 0.0138 –0.7775 0.0373 

18* n-Amyl formate –0.7826 –0.7211 0.0615 –0.7747 0.0079 

19 Ethyl isovalerate –0.7231 –0.7248 –0.0017 –0.6337 0.0894 

20 Isobutyl propionate –0.6935 –0.682 0.0115 –0.7108 –0.0173 

21 sec-Butyl acetate –0.6794 –0.6654 0.0140 –0.6543 0.0251 

22 Propargyl propionate –0.6554 –0.6309 0.0245 –0.5868 0.0686 

23 Vinyl propionate –0.6530 –0.6674 –0.0144 –0.6660 –0.0130 

24* Allyl butyrate –0.6355 –0.6213 0.0142 –0.6575 –0.0220 

25 Methyl hexanoate –0.5611 –0.6319 –0.0708 –0.5988 –0.0377 

26 Ethyl butyrate –0.4903 –0.4893 0.0010 –0.5039 –0.0136 

27 Butyl acetate –0.4864 –0.5145 –0.0281 –0.5736 –0.0872 

28 Propyl butyrate –0.4138 –0.4264 –0.0126 –0.4703 –0.0565 

29 Tert butyl propionate –0.4095 –0.4075 0.0020 –0.4722 –0.0627 

30* Vinyl butyrate –0.3825 –0.3511 0.0314 –0.3094 0.0731 

31 n-Hexyl formate –0.3824 –0.3565 0.0259 –0.3952 –0.0128 

32 Ethyl valerate –0.3580 –0.3624 –0.0044 –0.4302 –0.0722 

33 2-Ethylbutyl acetate –0.1202 –0.1015 0.0187 –0.1263 –0.0061 

34 Amyl propionate –0.0431 –0.0526 –0.0095 –0.0444 –0.0013 

35 Hexyl acetate –0.0087 –0.0081 0.0006 –0.0144 –0.0057 

36* Propyl valerate 0.0094 0.0230 0.0136 –0.0083 –0.0177 

37 Ethyl hexanoate 0.0637 0.0715 0.0078 0.0607 –0.0030 

38 Methyl heptanoate 0.1039 0.0982 –0.0057 0.1446 0.0407 

39 Allyl hexanoate 0.2128 0.2714 0.0586 0.2558 0.0430 

40 Methyl octanoate 0.5358 0.5063 –0.0295 0.5348 –0.0010 

To be continued 
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41 Allyl heptanoate 0.7282 0.8174 0.0892 0.8435 0.1153 

42* Methyl nonanoate 1.0419 1.1275 0.0856 1.1337 0.0918 

43 Vinyl 2-ethylhexanoate 1.0462 0.9630 –0.0832 0.9030 –0.1432 

44 Octyl acetate 1.0570 1.0820 0.0250 1.1547 0.0977 

45 Tert butyl formate 1.3719 1.3398 –0.0321 1.4095 0.0376 

46 Methyl decanoate 1.3778 1.3225 –0.0553 1.2409 –0.1369 

47 Methyl undecanoate 1.4248 1.5058 0.0810 1.4757 0.0509 

48* Decyl acetate 1.8794 1.8081 –0.0713 1.7688 –0.1106 

 

2. 2  Experimental methods 

2. 2. 1  Characterization of the compound structure 

The 3D holographic vector of atomic interaction field 

(3D-HoVAIF)[13-15] started from the two spatial invariants of 

the three-dimensional structures of molecules—the relative 

distance of atoms and the properties of the atoms themselves 

based on three classical non-bonding interaction modes 

between atoms, such as electrostatic, stereo and hydrophobic 

interactions. It provided three-dimensional vector descriptors 

for characterizing the molecular structures of compounds 

without any experimental parameters. The molecules of 

common organic compounds usually include hydrogen, 

carbon, nitrogen, phosphorus, oxygen, sulfur, fluorine, 

chlorine, bromine and iodine. They belong to five main 

groups in the periodic table, such as IA, IVA, VA, VIA and 

VIIA. Based on this, these atoms could be divided into 5 

categories. At the same time, in order to characterize the 

microenvironment of the molecular structure more accurately, 

according to the above classification, the atoms in different 

main groups were further subdivided into 10 categories 

according to their hybrid state (1.H, 2. C(sp
3
), 3. C(sp

2
), 4. C(sp), 

5. N(sp
3
), P(sp

3
), 6. N(sp

2
), P(sp

2
), 7. N(sp), P(sp), 8. O(sp

3
), S(sp

3
), 9. 

O(sp
2
), S(sp

2
) and 10. F, Cl, Br, I). The interaction between 

various atoms in a compound molecule could be up to 

10(10+1)/2 = 55 items. 3D-HoVAIF used three potential 

energies (electrostatic, stereo and hydrophobic) to express 

different forms of action. Therefore, for an organic compound 

molecule, there were at most 355 = 165 atomic action terms 

to characterize the molecular structure information. Although 

the atomic interaction mode in 3D-HoVAIF was not a direct 

manifestation of the compound, in most cases, the 

3D-HoVAIF descriptors contained a wealth of information on 

the potential energy distribution of organic compounds, 

which could well characterize the microenvironment of the 

molecules. 

2. 2. 1. 1  Electrostatic interaction 

The electrical effect of atoms is proportional to the charge 

and inversely proportional to the distance between atoms. As 

an important form of non-bonding interaction, electrostatic 

interaction was expressed by the classic Coulomb theorem 

(Eq. (1)). Among them, rij (nm) was the Euclid distance 

between atoms; e was the unit charge amount of 1.6021892 × 

10-19 C; ε0 was the dielectric constant in vacuum 8.85418782 

× 10-12 C2/J·m; Z was the net charge of the atom, the electron 

as the unit; m and n were the types of atoms. The electrostatic 

potential between all atoms in the molecule was calculated by 

this formula, and count into 55 electrostatic interaction terms 

according to their type. 
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2. 2. 1. 2  Steric interaction 

The steric interaction is the nondipole-dipole or dipole 

induced interaction between atoms in space. The 

Lennard-Jones equation was used to describe this mode of 

action (Eq. (2)). In the formula, εij = (εii·εjj)
1/2 was the depth of 

the atom-pair potential energy well, which was taken from 

the literature[16]; D was the empirically derived interatomic 

interaction energy correction constant taken as 0.01[17]; Rij
* = 

(Ch·Rii
*+ Ch·Rjj

*)/2, which was the corrected atom pair van 

der Waals radius, the correction factor Ch was 1.00 of sp3 

hybridization, 0.95 of sp2 hybridization, and 0.90 of sp 

hybridization[17]. 
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2. 2. 1. 3  Hydrophobic interaction 

Hydrophobic interaction is one of the factors that affect on 

the properties of compounds. Considering that the 

3D-HoVAIF descriptors required to express the interaction 

between atoms in the molecule, the hint method proposed by 

Kellogg et al.[18-22] was used to express this type of potential 

field. A simple expression for calculating the hydrophobic 

interaction between two atoms was defined in the hint (Eq. 

(3)). In the formula, S was the solvent accessible surface area  
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of atom (SASA), which was the surface area formed by 

water molecules (van der Waals radius of 0.14 nm) as the 

probe rolls its sphere on the surface of the atom[23]. T was a 

binary discriminant function of the action form to indicate the 

direction of the entropy effect of the hydrophobic interaction 

of different types of atoms[18-22], and a was the atomic 

hydrophobicity constant, taking the literature value[24]. 




 
njmi

ij

r

jjii TeaSaSnmEH ij

,

310)(     

 (1≤m≤10, m≤n≤10)                  (3) 

The Chemoffice 2006 was used to construct the molecular 

three-dimensional structures of the studied samples, and the 

MOPAC semi-empirical quantum chemistry software that 

comes with Chem3D was used to optimize the molecular 

structures and get the position coordinates of the atoms in the 

molecules at the AM1 level, and the Mulliken layout analysis 

method was used to calculate the net charge e of the atom in a 

single-point form (e.g., ethyl acetate dimensional structure is 

shown in Fig. 1. The position coordinates of each atom and 

the net charge quantity e are shown in Table 2). The space 

position coordinates of each atom in the molecule were used 

to calculate the distance rij between atoms, and finally the 

165 3D-HoVAIF descriptors were obtained by formulas (1), 

(2) and (3). 

 

Fig. 1.  Three-dimensional structure diagram of ethyl acetate 

 

Table 2.  Partial Charges and Coordinates of Each Atom of Ethyl Acetate 
 

Atom e x y z 

C(1) 0.355728 0.2291 –1.2842 –0.0000 

C(2) –0.357127 1.5360 –2.0388 –0.0000 

O(3) –0.397118 –0.8170 –1.8882 –0.0000 

O(4) –0.322514 0.2292 0.0538 –0.0000 

C(5) –0.098051 –0.9849 0.7548 –0.0000 

C(6) –0.35570 –0.7074 2.2523 –0.0000 

H(7) 0.152265 2.3823 –1.3160 –0.0000 

H(8) 0.170018 1.5947 –2.6780 0.9092 

H(9) 0.170076 1.5948 –2.6787 –0.9088 

H(10) 0.137276 –1.5679 0.4860 0.9092 

H(11) 0.137362 –1.5684 0.4858 –0.9088 

H(12) 0.137378 –1.6713 2.8088 –0.0000 

H(13) 0.135164 –0.1245 2.5210 –0.9093 

H(14) 0.135243 –0.1239 2.5213 0.9088 

 

2. 2. 2  Modeling and evaluation 

The stepwise regression (SMR) is a commonly used 

method for variable screening, so it was used to screen the 

original descriptors. Multiple linear regression (MLR) and 

partial least-squares regression (PLS) are commonly used 

methods for modeling, and therefore multiple linear 

regression (MLR) and partial least-squares regression (PLS) 

were used to build models. An excellent model must meet the 

following requirements: 1) Modeling correlation coefficient 

(R2) ≥  0.81, “Leave one method” cross-test correlation 

coefficient (RCV
2) ≥  0.64 and external prediction 

correlation coefficient (Rtest
2) ≥ 0.64, which are all higher 

than the standards mentioned in the literature[25]; 2) The ratio 

of various standard deviations (SD) to the value range (Vr) 

should be less than or equal to 10%[26]; 3) The absolute value 

of the prediction error for above 80% samples should be less 

than or equal to 2 times that of the standard deviation (2SD). 

The external prediction correlation coefficient (Rtest
2) and 
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standard deviation (SDtest) were calculated according to Eqs. 

(4) and (5), respectively. 
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In equations (4) and (5), both yi and



iy were the 

experimental and predicted values of the test set samples, 

respectively. 



iy  was the average of the experimental 

values of the test set samples. 

 

3  RESULTS AND DISCUSSION  

 

The research samples contained only six types of atoms: H, 

C(sp
3
), C(sp

2
), C(sp), O(sp

3
), and O(sp

2
), thereby producing a total 

of 63 structural descriptors, including 21 electrostatic 

interaction terms, 21 stereoscopic interaction terms, and 21 

hydrophobic interaction terms. Because there were too many 

structural descriptors, some structural descriptors may have 

little correlation with compound toxicity, so it was necessary 

to screen variables before modeling. The stepwise regression 

was used to screen variables which were introduced into the 

model for significance. By observing the changes of model 

correlation coefficient (R2), standard deviation (SD), 

cross-test correlation coefficient (RCV
2), and standard 

deviation (SDCV), we selected the best combination of 

variables to build the model. When 7 variables x1, x18, x33, x72, 

x80, x118 and x127 (listed in Table 3) were selected, the 

correlation coefficient (R2), standard deviation (SD), 

cross-test correlation coefficient (RCV
2) and standard 

deviation (SDCV) achieved ideal values at the same time. 

Among the selected variables, x1, x18 and x33 were 

electrostatic interaction terms, x72 and x80 were steric 

interaction terms, and x118 and x127 were hydrophobic 

interaction terms. 

 

Table 3.  Structural Descriptors Selected out by SMR for Modeling 
 

No. x1 x18 x33 x72 x80 x118 x127 

1 0.2630 0.3081 0.0000 9.4512 13.3881 2.5058 –39.5061 

2 0.1657 0.1615 0.0000 9.4438 13.0792 1.8963 –38.3331 

3 0.0698 0.0245 0.0000 9.4438 12.1325 1.6753 –49.8270 

4 0.4206 0.2568 0.0000 9.4469 15.3234 1.6745 –49.7144 

5 0.2680 0.1514 0.0000 9.4438 14.3071 1.6298 –45.1418 

6* 0.4174 0.1914 0.0000 9.4469 19.9730 2.1067 –49.8103 

7 0.3896 0.2575 0.0000 9.4438 14.5846 2.0875 –48.7584 

8 0.1927 0.1684 0.0512 9.4438 10.3336 1.6976 –8.5252 

9 0.5591 0.3334 0.0000 9.4395 19.2187 2.1008 –49.4027 

10 0.2594 0.0676 0.0000 9.4469 13.5881 1.9412 –34.6710 

11 0.4152 0.1653 0.0000 -0.0003 5.3267 2.1228 –61.1421 

12* 0.3820 0.1936 0.0000 9.4469 13.7263 2.0957 –52.7547 

13 0.1583 0.1061 0.0845 6.8120 3.1219 0.8706 –29.4123 

14 0.4586 0.1943 0.0000 9.4457 14.9213 2.1556 –64.1180 

15 0.2164 0.0710 0.0000 17.5580 9.1665 0.8051 –45.6454 

16 0.5381 0.3592 0.0000 9.4438 14.0289 2.6582 –44.0449 

17 0.5532 0.2670 0.0000 9.4469 14.8435 2.0998 –49.3409 

18* 0.5207 0.1782 0.0000 9.4938 16.7599 1.9268 –10.8316 

19 0.6781 0.3838 0.0000 9.4438 15.2826 2.4261 –51.0394 

20 0.6598 0.2529 0.0000 9.4438 16.5778 1.5201 –31.6317 

21 0.6572 0.2955 0.0000 9.4395 17.1701 2.1375 –40.1943 

22 0.3111 0.1929 0.0814 9.4469 10.5921 1.9374 –38.9479 

23 0.3240 0.1195 0.0000 17.5559 9.7247 1.1304 –5.9053 

24* 0.6202 0.2145 0.0000 9.4457 15.9782 1.6753 –49.8270 

25 0.6974 0.3212 0.0000 9.4438 15.6485 1.9338 –38.8962 

26 0.5271 0.1581 0.0000 9.4438 12.1632 1.9373 –38.9466 

27 0.5677 0.1454 0.0000 9.4438 14.7229 1.6755 –49.8563 

                                                                                      To be continued 
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28 0.7204 0.2281 0.0000 9.4395 16.9000 1.6298 –45.1417 

29 0.7477 0.2267 0.0000 9.4438 18.8592 1.6757 –49.8691 

30* 0.4712 0.1849 0.0000 17.5606 10.7128 1.7189 –62.1318 

31 0.6710 0.2094 0.0000 9.4469 17.7720 2.2757 –50.5241 

32 0.7266 0.2111 0.0000 9.4395 18.2193 1.7073 –8.5694 

33 0.8912 0.2863 0.0000 9.4438 17.5452 1.7101 –8.5826 

34 0.8137 0.2597 0.0000 9.4438 14.9115 2.1008 –49.3987 

35 0.8998 0.2751 0.0000 9.4469 14.7182 1.5201 –31.6316 

36* 0.8989 0.2102 0.0000 9.4438 19.7167 1.6299 –45.1410 

37 0.8239 0.2281 0.0000 9.4438 14.7305 2.0523 –35.8980 

38 0.8415 0.2828 0.0000 9.4438 13.5559 2.4284 –53.8515 

39 0.9012 0.2218 0.0000 9.4499 13.0857 1.6625 –8.3638 

40 1.0125 0.2792 0.0000 9.4438 13.5567 2.1621 –60.6598 

41 1.0157 0.2399 0.0000 9.4499 13.5891 2.7693 –45.2683 

42* 1.2021 0.2633 0.0000 9.4438 15.6672 2.6267 –83.5691 

43 1.4141 0.3793 0.0000 9.4438 26.0487 2.3941 –14.7822 

44 1.2429 0.3617 0.0000 9.4469 15.9724 3.0923 –63.8925 

45 0.7323 0.1013 0.0000 9.4438 13.8681 5.9578 –68.1012 

46 1.5014 0.2745 0.0000 9.4438 15.6676 0.3897 –18.0973 

47 1.5707 0.3163 0.0000 9.4438 13.5576 0.5714 –44.5666 

48* 1.7261 0.3412 0.0000 9.4469 14.7726 0.4994 –31.6074 

 

7-variable multiple linear regression model (M1), as in  

Eq. (6). 

log(1/IGC50) = –2.0424 + 2.7984x1 – 3.0006x18 + 6.2540x33 

+ 0.0491x72 – 0.0369x80 + 0.2897x118 + 0.0006x127                            

(6) 

N = 40, R1
2 = 0.9974, SD1 = 0.0469, F1 = 1748.8673; RCV1

2 

= 0.9939, SDCV1 = 0.0715, FCV1 = 749.2740; Rtest1
2 = 0.9955, 

SDtest1 = 0.0720 

N was the number of regression points, R1
2 the correlation 

coefficient, SD1 the standard deviation, F1 the significance 

test value; RCV1
2 the correlation coefficient of the cross-test, 

SDCV1 the standard deviation of the cross-test, FCV1 the 

significance test value of the cross-test, Rtest1
2 the external test 

correlation and SDtest1 the standard deviation of the external 

test. The correlation coefficient (R1
2) of the above model was 

as high as 0.9974, much greater than the 0.81 standard, 

indicating that the model fit well; the value range (Vr) of the 

research samples was 1.8794 – (–1.6092) = 3.4886, and the 

standard deviation (SD1) was 0.0469, (0.0469/3.4886) × 

100% = 1.3444%, much lower than the 10% standard, which 

meat the model fitting errors were small. The cross-test 

correlation coefficient (RCV1
2) was 0.9939 and much larger 

than the 0.64 standard; the cross-test standard deviation 

(SDCV1) was 0.0715, (0.0715/3.4886) × 100% = 2.0495%, 

which was much lower than the 10% standard, suggesting 

that the model was stable. The external test correlation 

coefficient (Rtest1
2) was 0.9955 and much greater than 0.64; 

the external test standard deviation (SDtest1) was 0.0720, 

(0.0720/3.4886) × 100% = 2.0639%, which was greatly lower 

than the 10% standard, indicating strong predictive ability 

and small prediction errors of the model. 

In order to further understand the influence of variables on 

compound toxicity, the structural descriptors in Table 2 were 

used as the independent variables X, and the compound 

toxicity value log(1/IGC50) as the dependent variable Y. The 

partial least-squares regression was used to establish a model 

(M2). The change of the correlation coefficients (R2/RCV
2) 

with the number of principal components is shown in Fig. 2. 

When the number of the principal components reached 3, the 

correlation coefficient (R2) of the model got the maximum 

value, and the cross-test correlation coefficient (RCV
2) was 

close to the maximum value. Thereafter, 3 principal 

components were chosen to build the model. 
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The distribution of the scores of the 40 training set samples 

in the top 2 principal components of the PLS space is plotted 

in Fig. 3. The scores of most of the studied samples (97.5%) 

fell within the 95% confidence elliptical confidence circle. 

There was only one abnormal point (compound No. 13), 

which reflected that the structural descriptors could represent 

the molecular structure characteristics of ester compounds 

and got the correct performance in the statistical model. The 

abnormal point in Fig. 3 is compound No. 13 “2-butynyl- 

acetate”, which contained a “triple bond” and had a certain 

degree of particularity. 
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 Fig. 3.  PLS scores of samples in the top 2 principal components 

 

At this time, the model's R2
2 = 0.9940, SD2 = 0.0646; RCV2

2 

= 0.8952, SDCV2 = 0.0925; Rtest2
2 = 0.9955, SDtest2 = 0.0716. 

The correlation coefficient (R2
2) of the model was as high as 

0.9940, which was much larger than the 0.81 standard, 

indicating that the model fit well; the standard deviation (SD2) 

was 0.0646, (0.0646/3.4886) × 100% = 1.8517%, which was 

much lower than the 10% standard, so the model fitting errors 

were small. The cross test correlation coefficient (RCV2
2), 

0.8952, was much larger than the 0.64 standard; the cross test 

standard deviation (SDCV2) was 0.0925, (0.0925/3.4886) 

×100% = 2.6515% and greatly lower than the 10% standard, 

which suggested stability for the model. The external test 

correlation coefficient (Rtest2
2) of 0.9955 was remarkably 

greater than 0.64; the external test standard deviation (SDtest2) 

was 0.0716, (0.0716/3.4886) × 100% = 2.0524%. It was 

significantly lower than the 10% standard, also showing that 

the model had strong predictive ability and the prediction 

errors were small. 

In order to verify whether the excellent model results were 

accidental, the model was verified by random sorting of the Y 

vector 20 times. The correlation coefficients of the Y original 

vector and the randomly sorted Y vector are plotted on the 

model R2 and RCV
2 in Fig. 4. According to the judgment 

criteria proposed by Andersson et al.[27], the intercepts of R2 

and RCV
2 on the vertical axis should not exceed 0.300 and 

0.050, respectively. From Fig. 4, it can be found that the 
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intercepts of R2 and RCV
2 of the PLS model built in this paper 

were 0.072 and –0.400, respectively. Therefore, it could be 

considered that the excellent results of the model built in this 

paper were not accidental, so our model could be used to 

analyze the structures of ester compounds. 
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     Fig. 4.  Plot of Y random permutations test 

 

In order to further study the influence of each variable on 

the compound toxicity log(1/IGC50)(Y), the load distribution 

of the samples in PLS is plotted in Fig. 5, in which x1, x72, 

x118, and x127 are in the upper right. It means that they are 

positively correlated with Y in the first and second principal 

components, and the distance between x1 and the origin is 

relatively large, which reflects that it has a relatively larger 

correlation with Y. x18 and x80 are at the bottom right of the 

figure, indicating that they are positively correlated with Y in 

the first principal component, and negatively correlated with 

Y in the second principal component. x33 is at the upper left of 

the figure, which suggests that it is negatively correlated with 

Y in the first principal component, and positively correlated 

with Y in the second principal component. 
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Fig. 5.  Plot of PLS loadings plot of the samples 

 

The importance of a variable can reflect the degree of 

correlation between the variable and Y. It is generally 

considered that variables with variable importance projection 

(VIP) values greater than 1 are highly correlated with the 

toxicity log(1/IGC50) of ester compounds. The variable 

importance projection is shown in Fig. 6. Fig. 6 shows that 

the VIP values of the three variables x1, x18, and x80 were 

greater than 1, indicated that these three variables were 

highly correlated with the toxicity log(1/IGC50) of ester 

compounds. x1 corresponding to the electrostatic interaction 

of hydrogen atoms, described that the more hydrogen atoms 

in the compound, the higher the toxicity log(1/IGC50) value 

of the ester compound may be. x18 corresponding to the 

electrostatic effect of C(sp
3
) and O(sp

2
), and x80 corresponding 

to the stereoscopic interaction effect of C(sp
2
) and O(sp

3
). The 

above shows that oxygen atoms had a greater influence on 

the toxicity value. 
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Fig. 6.  Variable importance projection 

 

The calculated values of the toxicity log(1/IGC50) of the 

two models for the compounds are listed in Table 1 as Cal.1 

and Cal.2, Err.1 and Err.2 are the errors, respectively. For the 

convenience of observation, the correlation between the 

calculated log(1/IGC50) of the model's toxicity to the 

compound and the experimental values is plotted in Fig. 7, 

and the corresponding errors are plotted in Fig. 8. Fig. 7 

shows that most of the sample points were near the 45° 

diagonal, indicating that the calculated values of the model’s 

toxicity log(1/IGC50) for the compounds were highly 

correlated with the experimental values. The two values were 

close in size. The toxicity log(1/IGC50) could be predicted 

accurately, which once again showed the model's good 

predictive ability and excellent predictive results. 
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Fig. 7.  Plot of the predicted values vs. the experimental ones 

 

A good prediction model usually requires the prediction 

errors of most samples not exceeding plus or minus 2 times 

that of the standard deviation (ie ± 2SD). It can be found in 

Fig. 8 that most of the samples' errors were within ± 2SD of 

the model. For model M1, only 1 sample (No. 1) had a 

prediction error exceeding ± 2SD1; for model M2, only 3 

samples (Nos. 1, 43, 46) had prediction errors larger than ± 

2SD2. This shows that the model was accurate in predicting 

the toxicity log(1/IGC50) of the compounds, and the 

prediction errors were in an acceptable range. The model 

could be used to predict the toxicity log(1/IGC50) of ester 

compounds. At the same time, the existence of large error 

samples indicated that some special structural information of 

compounds had not been fully expressed, and the molecular 

structure characterization method needed further improve- 

ment. 
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Fig. 8.  Plot of the predicted residuals scattered 

 

4  CONCLUSION  

 

By classifying the atoms in the compound, the electrostatic 

interaction, steric interaction and hydrophobic interaction 

between the atoms were calculated as structural descriptors 

on the three-dimensional structure of the compound, and then 

the structures of 48 ester compounds were expressed 

parametrically. The relationship models between compound 

structures and toxicity log(1/IGC50) were established through 

multiple linear regression (MLR) and partial least-squares 

regression (PLS), and it was found that the toxicity of ester 

compounds log(1/IGC50) was closely related to the molecular 

structures of the compounds. The constructed 

structure-toxicity log(1/IGC50) relationship models can be 

used to predict the toxicity log(1/IGC50) of ester compounds. 

Due to the slightly larger prediction errors of individual 

samples, there is still a lot of room for improvement in the 

molecular structure characterization method, and related 

researches are underway. This paper has certain reference 

value for the quantitative structure-toxicity relationship study 

of toxic compounds in environment. 
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