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n EXPERIMENTAL  
Material Characterization. X-ray diffraction (XRD) patterns were acquired on the Rigaku diffractometer (Japan) equipped with Cu Kα 
radiation. The morphology was studied by a field-emission scanning electron microscopy (FESEM; JSM 7500F, JEOL, Japan) and a 
transmission electron microscopy TEM (Titan G2 60-300, FEI) with EDS equipment. The aberration-corrected HAADF-STEM 
characterization was conducted on a transmission electron microscope (Titan Cubed Themis G2 300). The thickness of the samples 
was obtained on an atomic force microscope (AFM; Multimode 8, Bruker, USA). The ultraviolet-visible diffuse reflectance absorption 
spectrum was investigated on a UV-vis spectrophotometer (UV-2600, Shimadzu, Japan). The Brunauer-Emmett-Teller (BET) specific 
surface area (SBET) and pore size distribution of the powders were obtained by nitrogen adsorption in a nitrogen adsorption apparatus 
(TriStar II 3020, Micromeritics, USA). X-ray photoelectron spectroscopy (XPS) analysis was performed on a Thermo Scientific ESCALA 
210 XPS spectrometer system (USA) with 300 W Al Kα radiation to investigate the chemical composition of the samples and the 
chemical states of the elements. The binding energies were calibrated by the C 1s peak at 284.8 eV from adventitious carbon. 
Photoluminescence (PL) spectra of the samples were analyzed by a fluorescence spectrophotometer (F-7000, Hitachi, Japan) with the 
excitation wavelength at 420 nm. XANES and EXAFS spectra of Pt L3-edge were recorded at BL01C1 of the National Synchrotron 
Radiation Reaction Center (NSRRC). 

Photoelectrochemical Measurements. Electrochemical measurements were measured on an electrochemical workstation (CHI660C, 
China) in a standard three-electrode system. The photoelectrodes were prepared as follows. 20 mg of powdered samples was 
dispersed into 20 uL of Nafion and 300 uL of ethanol under ultrasonication for 30 min. The as-prepared samples coated on an FTO 
glass acted as the working electrode with an active area of ca. 1.0 cm2, whereas a Pt wire and Ag/AgCl (saturated KCl) were used as 
the counter and reference electrodes, respectively. 50 mL of 0.5 M Na2SO4 aqueous solution was selected as the electrolyte. A LED 
light (3 W, 420 nm) (Shenzhen LAMPLIC Science Co. Ltd. China) was used as the visible-light source. 50 mL of 0.5 M Na2SO4 aqueous 
solution was selected as the electrolyte.  

Photocatalytic Performance Test. The photocatalytic H2 production experiments were carried out in a 100 mL three-necked flask 
using a 350 W Xenon arc lamp as a visible-light source. The lamp with a UV cut-off filter (≥ 420 nm) was used to trigger the photocatalytic 
reaction. In a typical photocatalytic reaction, 20 mg photocatalyst was suspended in 80 mL of 10 vol% lactic acid aqueous solution. 
Before irradiation, the system was bubbled with nitrogen through the flask for 30 min to completely remove the dissolved oxygen. 
During the photocatalytic experiments, a 0.4 mL gas was sampled from the headspace of the reactor and the photocatalytic hydrogen 
evolution activity was analyzed by gas chromatography (GC-14C, Shimadzu, Japan) with a thermal conductivity detector. Besides, the 
stability experiment was conducted by repeating the above steps four times. The cycle was repeated every three hours, and N2 was 
saturated for half an hour before the next cycle was started. 

The apparent quantum efficiency (AQE) measurement was measured under the irradiation of four 420 nm LED lights with an 
irradiation density of 9.0 mW cm-2. The AQE of photocatalytic H2 production was calculated according to the following equation (1):  

AQE = 2 × number of  evolved H2 molecules in unit time
number of incident photons in unit time  × 100% (1) 

The energy conversion efficiency (ηc) under a 350 W Xenon arc lamp with a UV cut-off filter (≥ 420 nm) was determined by equation 
(2), where ∆G0 (J mol-1) is the standard Gibbs energy for the hydrogen evolution reaction, R (mol s-1) is the rate of hydrogen generation 
in its standard state, Es (W cm-2) is the incident solar irradiance and A (cm2) is the irradiated area.[1] η� = ∆���/���                          (2) 

Average Decay Time (τaverage). The average decay time (τaverage) was calculated from equation 3: �������� = ����� + ��������� + ����           (3) 

Work Function. The work function (denoted as W) of the samples is calculated according to the following equation: 

Wsample = e×CPDsample + Wprobe (4) 

where Wprobe is the work function (4.25 eV) of gold mesh probe, CPDsample is the contact potential difference value of the sample, e is 
the electron charge, and Wsample is the work function of the tested sample. 

Furthermore, the Fermi levels (Ef) of the samples are calculated as follows: 

Wsample + Ef = Evac (5) 

where Wsample is a work function, and Evac is the energy of the vacuum level (0 eV).  
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Figure S1. (a) Magnified FESEM image of the CdS nanosheets; (b) FESEM image of CdS/GQDs/PtSAs; (c) TEM image of GQDs.
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Figure S2. EDS spectrum of CdS/GQDs/PtSAs. 
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Figure S3. XRD patterns of CdS/GQDs/PtSAs before and after cycled photocatalytic reactions. 
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Figure S4. High-resolution X-ray photoelectron spectra of C 1s regions. 
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Figure S5. Mott-Schottky curves of CdS. 
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Table S1. Performance Comparison of CdS-based Photocatalysts for H2 Production 

Photocatalysts Light source Yield Reference 

CdS/GQDs/PtSAs 350W Xe lamp, λ > 420 nm 13.48 mmol g-1 h-1 This work 

MoS2/Graphene-CdS 300W Xe lamp, λ > 420 nm 1.6 mmol h-1 [2] 

CdS-700Ni@ Graphene 300W Xe lamp, λ > 420 nm 5.9 mmol g-1 h-1 [3] 

CdS@MoS2 Vis-light illumination (λ > 400 nm) 404 µmol h-1 [4] 

CdS/Ni2P Vis-light illumination 33480 μmol h−1 g−1 [5] 

MoC/CdS 300W Xe lamp, λ > 420 nm 224.5 μmol h−1 [6] 

rGO-CdS@MoS2 Visible light (420 < λ < 780 nm) 14.4 mmol g-1 h-1 [7] 

Pt/CdS Vis-light illumination (λ > 400 nm) 13.0 mmol g-1 h-1 [8] 

Pt/Mo2C/CdS 300W Xe lamp, λ > 420 nm 8090 μmol g-1 h-1 [9] 

Mo2N/Mo2C/GR/CdS 300W Xe lamp, λ > 420 nm 4520 μmol g-1 h-1 [10] 

CdS/WSx 300W Xe lamp, λ > 420 nm 760.8 μmol h−1 [11] 

CdS/VC 300W Xe lamp, λ > 420 nm 14.2 mmol h−1 g−1 [12] 

2%Ni2P/CdS 300W Xe lamp, λ > 400 nm 0.91 mmol·h−1 [13] 
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