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1. Physical Characterizations 

The surface morphology and element composition analyses were examined by field emission scanning electron microscopy (FESEM, Gemini SEM 
300, Germany Zeiss) and energy-dispersive X-ray spectroscope (EDX). The microstructures of all samples were examined by transmission electron 
microscopy (TEM) using a Tecnai G2 20 microscope operating at an acceleration voltage of 200 kV. The crystallographic structures were recorded on a 
Powder X-ray diffractometer (XRD, Bruker D8 ADVANCE diffractometer). The electronic structures and surface chemical components were analyzed by 
X-ray photoelectron spectroscopy (XPS, ESCALAB XI+-600W, Thermo Fisher Scientific). The surface area (BET) and pore size distributions (PSD) were 
recorded by N2 adsorption-  desorption isotherm on a surface analyzer (ASAP 2020 HD88, Micromeritics USA). The pore size distributions were 
calculated according to the Barrett-Joyner-Halenda (BJH) method from the branch of adsorption isotherm. 

2. Photoelectrochemical Measurements 

UV-VIS diffuse reflectance spectra of all materials were measured by a Carry5000 UV-vis spectrophotometer (Agilent) in the range of 300–700 nm. 
Transient fluorescence decay spectra and photoluminescence (PL) emission spectra of as-obtained photocatalysts were performed by an Edinburgh-
FLS980 (England) spectrophotometer. Transient photocurrent responses (TPR) and Electrochemical impedance spectroscopy (EIS) measurements were 
evaluated on an electrochemical workstation (CHI660e Instruments) with a standard three-electrode photoelectrochemical cell. A Ag/AgCl electrode, a 
platinum-wire electrode and a potocatalyst-coated glassy carbon electrode (GCE, 3 mmin diameter) were employed as the reference, counter, and 
working electrodes, respectively. For thr working electrode preparation, 10 mg of as-prepared potocatalysts was mixed with 5 mL of deionized water, then 
5 μL of the homogeneous suspension was pipetted onto an indium tin oxide (ITO) conductive glass. Particularly, the electrolytes required for TPR and 
EIS tests were 0.5 M Na2SO4 (pH = 6.7) and 5 mmol/L potassium ferricyanide solution, respectively. In addition, a 10 W xenon lamp (410–420 nm) was 
employed as the light source during TPR measurement. 
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Figure S1. SEM image of g-C3N4. 
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Figure S2. TEM image of g-C3N4. 
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Figure S3. TEM images of S-g-C3N4-D. 
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Figure S4. The pore size distribution curves of g-C3N4, g-C3N4-D, and S-g-C3N4-D. 
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Figure S5. XPS survey spectrum of S-g-C3N4-D. 
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Figure S6. The high-resolution (a) C 1s and (b) N 1s spectra of S-g-C3N4-D. 
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Figure S7. (a) Mott-Schottky plots of g-C3N4 obtained from different frequencies. (b) Mott-Schottky plots of g-C3N4, g-C3N4-D, and S-g-C3N4-D. 
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Figure S8. (a) UV-vis absorption spectrum and (b) the corresponding estimated energy gap of S-g-C3N4. (c) Mott-Schottky plot of S-g-C3N4. 
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Table S1. The BET Surface Areas, Total Pore Volumes and Average Pore Size of g-C3N4, g-C3N4-D and S-g-C3N4-D. 

Samples BET surface area (m2/g) Total pore volume (cm3/g) Average pore size (nm) 

g-C3N4 96.78 0.60 
2.13 

g-C3N4-D 112.83 0.68 
2.42 

S-g-C3N4-D 135.74 0.72 
2.58 
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Table S2. The XPS Results of g-C3N4, g-C3N4-D and S-g-C3N4-D. 

Samples Peak 
Binding energy 
(eV) 

Assignment 
FWHM 
(eV) 

Area 
(Arb. unit) 

Peak areas ratio 
(%) 

g-C3N4 

C 1s 

287.9 N–C=N 1.2 82973 98.3 

284.6 C–C 1.2 1447 2.7 

g-C3N4-D 
287.9 N–C=N 1.2 78370 93.3 

284.6 C–C 1.4 5663 6.7 

S-g-C3N4-D 
287.9 N–C=N 1.2 75129 95.1 

284.6 C–C 1.1 3871 4.9 

g-C3N4 

N 1s 

398.5 N–C=N 1.2 150455 74.7 

399.7 N–(C)3 1.1 28806 14.3 

401.0 -NH 1.1 22281 12.0 

 398.5 N–C=N 1.2 136461 70.1 

g-C3N4-D 399.7 N–(C)3 1.3 30648 15.8 

 401.0 -NH 1.4 27452 14.1 

S-g-C3N4-D 

398.5 N–C=N 1.3 129439 64.7 

399.7 N–(C)3 1.4 43236 21.6 

401.0 -NH 1.4 27280 13.7 

S-g-C3N4-D S 2p 165.4 C–S–C 2.1 447 100 
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Table S3. The Comparisons of Photocatalytic H2 Evolution Activities between S-g-C3N4-D and Other S-doped C3N4 Relevant Photocatalysts Previously 
Reported. 

Photocatalyst Amount of 
photocatalyst 
(mg) 

Sacrificial reagent Co-catalysts Light source H2 Evolution  
(μmol·g-1·h-1) 

Ref. 

S-g-C3N4-D 20 10 vol% of TEOA 3 wt% Pt 300 W Xe lamp  
(> 420 nm) 

3110.1 This work 

PCNS 15 10 vol% of TEOA 2 wt% Pt 300 W Xe lamp  
(> 420 nm) 

880.2 1 

SCN1.0 50 10 vol% of TEOA 3 wt% Pt 300 W Xe lamp  
(> 400 nm) 

141.9 2 

MTCN-6 40 20 vol% of TEOA 1 wt% Pt 300 W Xe lamp  
(> 420 nm) 

1511.2 3 

SCCN0.1 50 10 vol% of TEOA 1 wt% Pt 150 W Xe lamp  
(> 420 nm) 

1262.5 4 

0.3S-CN 10 17 vol% of TEOA 1 wt% Pt 500 W Xe lamp  
(> 420 nm) 

952 5 

CoSx/SCN 50 10 vol% of TEOA 0.75 wt% Pt 300 W Xe lamp  
(> 420 nm) 

573.06 6 

PSCN 20 20 vol% of TEOA 3 wt% Pt 300 W Xe lamp  
(> 400 nm) 

1969 7 

PCN-S-3 100 10 vol% of TEOA 1 wt% Pt 300 W Xe lamp  
(> 420 nm) 

318 8 

CNBS 20 10 vol% of TEOA 1 wt% Pt 150 W Xe lamp  
(> 420 nm) 

2660 9 

PCNS 15 10 vol% of TEOA — 300 W Xe lamp  
(> 420 nm) 

345 10 
 

CoS2@SCN 50 30 vol% of TEOA — 500 W Xe lamp  
(> 420 nm) 

223.6 11 

S-Cu2O/g-C3N4 100 10 vol% of TEOA 0.38 wt% Pt 300 W Xe lamp  
(> 400 nm) 

240.8 12 

NS-GC 10 10 vol% of TEOA 3 wt% Pt 400 W Xe lamp 
(> 420 nm)  

310.63 13 

Mo/S/g-C3N4 25 10 vol% of CH3OH - 300 W Xe lamp 
(> 420 nm) 

294 14 

2D-SCN 50 5 vol% of TEOA 1 wt% Pt 140 W Xe lamp 
(> 420 nm) 

2548 15 

In2O3/SCN 20 10 vol% of TEOA - 300 W Xe lamp 
(> 420 nm) 

93 16 
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Table S4. The Fitted Fluorescence Lifetimes, the Average Lifetimes and Corresponding Amplitudes of Photoinduced Charge Carriers in g-C3N4, g-C3N4-
D and S-g-C3N4-D 

Samples Lifetime, τ (ns) Rel (%) τAvg (ns) 

g-C3N4 
τ1 = 1.566 A1 = 72.56 

4.190 
τ2 = 6.143 A2 = 27.44 

g-C3N4-D 
τ1 = 1.401 A1 = 70.26 

4.602 
τ2 = 6.288 A2 = 29.74 

S-g-C3N4-D 
τ1 = 1.692 A1 = 65.03 

5.215 
τ2 = 6.837 A2 = 34.97 
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