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ABSTRACT The roles of temperature change in surface-enhanced Raman scattering (SERS) 
hotspots are important for understanding the plasmon-mediated selective oxidation of p-aminothio-
phenol in a SERS measurement. Here, we demonstrate that the temperature change in hotspots 
seriously influences the conversion of p-aminothiophenol on Au by employing variable-temperature 
SERS measurements. The conversion steadily and irreversibly increased when the temperature 
increased from 100 to 360 K. But the conversion decreased above 360 K, because this conversion 
was exothermic. This temperature-dependence conversion suggests that the temperature change 
in hotspots originated from the photothermal effect should be coupled to the hot-electron effect in 
promoting the selective oxidation of p-aminothiophenol. 
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n TEXT 
Plasmon-mediated chemical reactions are promising in utilizing 
solar energy, because they use visible light for driving chemical 
reactions under mild conditions.[1-4] The oxidation of p-aminothio- 
phenol (PATP) to p,p’-dimercaptoazobenzene (DMAB) during a 
surface-enhanced Raman spectroscopic (SERS) measurement is 
a typical plasmon-mediated chemical reaction, as shown in Equa-
tion 1, which occurs in an ambient condition under room tempera- 
ture.[5-7] Similar reactions have been found regarding the conver-
sions of aromatic anilines to azobenzene derivates.[8-10] Because 
the conversion of PATP is highly selective, it has been a model for 
investigating a plasmon-mediated chemical reaction in terms of 
plasmonic properties and reaction mechanisms.[11-14] So far, it is 
believed that hot electrons or holes are produced during plas-
mons decay and react with molecules on the surface of plasmonic 
materials.[3] The investigations by using a tip-enhanced Raman 
spectroscopy and a gap-mode SERS show that the localized sur-
face plasmon boosts the conversion of PATP,[15-19] which are con-
sistent with the conclusions from the laser-wavelength-dependent 
and laser-power-density-dependent observations.[12,20] The inves-
tigations about the mechanism of PATP conversion show that the 
molecular oxygen is activated by hot electrons and converted to 
surface oxygenated species, which selectively oxidizes PATP to 
DMAB.[21,22] Nonetheless, the temperature change in SERS hot-
spots caused by a photothermal effect is an important aftereffect 
of plasmons decay in addition to the production of hot electrons 
or holes,[3,23-26] which has been found in a SERS study of a plas-
mon-mediated chemical reaction of p-nitrothiophenol.[27-29] The 
missing understanding about the roles of temperature change in 
SERS hotspots makes the physical picture of the plasmon-medi-
ated selective oxidation of PATP ambiguous, which is therefore 
desired to be revealed. 
2 AuS-Ph-NH2 + O2 + hv = AuS-Ph-N=N-Ph-SAu + 2H2O              (1) 

Here, we reveal the roles of the temperature change in SERS 
hotspots in the selective oxidation of PATP by using an in-situ vari- 
able-temperature SERS (VT-SERS). The measurements were 
carried out in a cell with a feedback-temperature-controlling sys-
tem.[30] By reducing the laser power density in VT-SERS mea- 
surements, the photothermal effect, which is difficult to be directly 
measured, was excluded as much as possible. Thus, the tempera- 
ture in SERS hotspots was manipulated through controlling the 
cell temperature, and the roles of temperature change in hotspots 
were revealed according to the temperature-dependent SERS 
spectra of PATP. 

Figure 1 displays temperature-dependent surface-enhanced 
Raman spectra of PATP adsorbed on Au nanoparticles. The tem-
perature gradually increased from 100 to 480 K. At 100 K, the 
main bands are at 1007, 1080, 1178, 1488 and 1590 cm-1, which 
have been assigned to the characters of PATP.[31] At 280 K, the 
characteristic bands at 1142, 1388 and 1435 cm-1 appeared. Ex-
periments and theoretical calculations in literatures assign these 
bands to the DMAB produced by PATP,[6-7,32] and thus the tempera- 
ture of 280 K is the onset. Because the transformation process 
from PATP to DMAB depends on laser illumination time,[7,33] the 
spectral features are illumination-time-dependent. Therefore, to 
demonstrate the conversion of PATP under an equilibrium, the 
Raman spectra were acquired in a time serial at a fixed tempera-
ture. The spectra shown in Figure 1 are with laser-illumination- 
time-independent spectral features. Above 400 K, two broad bands 
appeared at the frequency span between 1300 and 1600 cm-1, 
which are the spectral characters of amorphous carbon spe-
cies.[32,34] The intensity of these two bands increased and those of 
other Raman bands decreased as the temperature increased up to 
480 K, which shows a thermal decomposition of surface species.  

In more details, the frequency of SERS bands was temperature 
dependent. For example, as shown in Figure 2a, the band of 
PATP steadily redshifted from 1080.4 to 1078.0 cm-1, when the 
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temperature increased from 100 to 280 K. The redshift of SERS 
band can be ascribed to the temperature increase in SERS 
hotspots.[30] The intensity ratio of the bands of 1140 and 1080 cm-1 
(I1140/I1080) was used to quantify the extent of the conversion of 
PATP. Figure 2b plots I1140/I1080 as a function of temperature. In the 
SERS spectra of PATP and DMAB, the values of I1140/I1080 are 0 
and 2.34, respectively.[22] All values in Figure 2b fall between 0 
and 2.34, indicating that not all PATP molecules were converted 
to DMAB. I1140/I1080 steadily increased as a result of the increasing 
temperature from 280 to 360 K, which shows that the increase in 
the temperature in hotspots promoted the conversion of PATP. 

These temperature-dependent SERS of PATP indicate that the 
temperature in hotspots was well manipulated and the tempera-
ture change seriously influences the conversion of PATP. 

It is interesting that I1140/I1080 decreased when the temperature 
was higher than 360 K. The decrease in I1140/I1080 indicates a back-
ward conversion of DMAB, which is supported by a temperature-
dependent SERS spectra in a cooling process. As shown in Fig-
ure 3, the temperature firstly increased from 100 to 360 K and 
then decreased backward to 100 K. It can be found that spectral 
features remain during the temperature dropping, which indicates 
that the increase in the intensity of the bands at 1140, 1390 and 
1438 cm-1 between 280 and 360 K was not from any reversible 
temperature-dependent physical process, and was not changed 
in any further laser-illumination. Thus, the backward conversion 
of DMAB above 360 K is due to the decomposition of DMAB. 

These temperature-dependent SERS spectra demonstrate that 
the conversion of PATP is a combination of a kinetics effect and a 
thermodynamics effect, which is supported by the density func-
tional theory (DFT) calculations about the potential energy of ele-
mentary steps. Previous experiments suggest that the molecular 
oxygen activation to produce surface oxygenated species is the 
initial step which is followed by an oxidation of PATP.[22] Therefore, 
we examined two elementary steps, i.e. the reaction between a 
clean Au(111) slab surface and an oxygen molecule, and that be-
tween PATP and surface oxygenated species. The configuration 
of DMAB adsorbed on the Au(111) slab was similar to that on a 
Ag(111) one.[35] To demonstrate a representative tendency, the 
surface oxygenated species with a series of coverages was taken 
into account. Figure 4 summarizes the potential energy of the spe-
cies in these two steps. The energy difference of the species be-
fore and after the conversion of PATP show that the net reaction 
energy was approximately -1.57 eV. On all Au(111)-On surfaces 
with an oxygen coverage from 2/3 to 2/9, the reaction energy val-
ues of the first step were positive and that of the second step was 

Figure 1. Temperature-dependent (from 100 to 480 K) Raman spectra of 
PATP adsorbed on Au nanoparticles excited by a 632.8 nm laser with a 
power density of 3.7 × 105 mW/cm2. 

Figure 2. Temperature-dependent band frequency (a) and I1140/I1080 (b) of 
PATP adsorbed on Au nanoparticles excited by a 632.8 nm laser with a 
power density of 3.7 × 105 mW/cm2. 
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Figure 3. Temperature-dependent (between 100 and 360 K) Raman spec-
tra of PATP adsorbed on Au nanoparticles excited by a 632.8 nm laser 
with a power density of 3.7 × 105 mW/cm2. 
 



COMMUNICATION 

2210079 
 

Chinese Journal of Structural Chemistry

Chin. J. Struct. Chem. 2022, 41, 2210077-2210081 © 2022 fjirsm, CAS, Fuzhou 
DOI: 10.14102/j.cnki.0254-5861.2022-0134 

negative. The production of oxygenated species was endothermic 
and the oxidation of PATP was exothermic. Based on these esti-
mations about reaction energy, the influence of temperature 
change in the conversion of PATP as summarized in Figure 1 can 
be interpreted. When the temperature increased from 100 to 360 
K, the conversion of PATP was trigged and promoted kinetically. 
Because the overall reaction of PATP is exothermic, further in-
crease in temperature above 360 K led to a backward shift of the 
equilibrium of this reaction.  

These understandings of the influence of a temperature change 
in the conversion of PATP demonstrate a clearer physical picture 
about the conversion of PATP in a SERS measurement. The laser 
of a Raman spectrometer excites the localized surface plasmons 
of a SERS substrate. Due to the localized surface plasmons, an 
enhanced electromagnetic field and the enhanced Raman scat-
tering of surface species are generated. The decay of localized 
surface plasmons produces hot electrons and heat. The gener-
ated hot electrons effectively reduce the reaction barrier of acti-
vating molecular oxygen, which produces surface oxygenated 
species. The heat promotes the reaction between PATP and sur-
face oxygenated species. The generations of hot-electrons and 
heat depend on the properties of a plasmonic material, and the re-
action barrier between PATP and surface oxygenated species relies 
on the catalytic activity of a plasmonic material surface. 

n CONCLUSION  
In conclusion, the roles of temperature change of SERS hotspots 
in the plasmon-mediated selective oxidation of p-aminothiophenol 
to p,p’-dimercaptoazobenzene on Au were revealed at the tem-
perature above 100 K by using a variable-temperature surface-
enhanced Raman spectroscopy. In the laser illumination with a 
power-density of 3.7 × 105 mW/cm2, the conversion of PATP 
steadily increased with an onset temperature of 280 K as it in-
creased from 100 to 360 K. Further increase in temperature led 
to a backward shift of the conversion equilibrium of PATP. Density 
functional theory calculations show that the activation of molecu-
lar oxygen to surface oxygenated species is endothermic, and the 
reaction between PATP and the surface oxygenated species as 
well as the overall conversion between PATP and molecular oxy- 

gen is exothermic. These results suggest that the driving force of 
the conversion of PATP in a SERS measurement should be a syn-
ergistic effect of a photoelectric effect and a photothermal effect 
thermodynamically and kinetically, which is highly dependent on 
the plasmonic properties and the surface catalytic activity of a 
plasmonic material. 

n EXPERIMENTAL  
Au nanoparticles were synthesized according to Frens’ recipe.[36] 
(See Supplementary information) The setup of variable-tempera-
ture SERS measurements was composed by Linkam THMS600 
and a Renishaw In-Via Raman spectrometer, where a He-Ne la-
ser with a wavelength of 632.8 nm was used. 

The computation was performed by using a slab model based 
DFT calculation in the Vienna Ab-initio Simulation Package (VASP, 
version 5.4.1),[37,38] where the projector augmented wave method 
and Perdew-Burke-Ernzerhof generalized-gradient approximation 
functional were used.[39] An energy cutoff of 450 eV and a first 
order Methfessel-Paxton[40] smearing with a sigma of 0.2 were ap-
plied. The reaction energy change was approximately estimated 
by accounting the change in the energy of the electron. A five-layer 
Au(111) slab was applied, where three layers were fixed for sim-
ulating the properties of the bulk, and two layers of Au and ad-
sorbate were fully optimized. A vacuum layer with a thickness of 
30 Å was used for simulating the surface. PATP and DMAB were 
adsorbed on a Au(111)-6 × 3 slab, respectively. The O was ad-
sorbed on a Au(111)-3 × 3 slab. A Monkhorst-Pack k-point sam-
pling[41] of 5 × 5 × 1 was used. The dipole moment perpendicular 
to the surface was corrected. The lattice constant of Au is 4.174 
Å.[42] The species of H2O and O2 was calculated by using a 10 Å 
× 10 Å × 10 Å cell with a 1 × 1 × 1 k-point sampling where the 
molecules are as in the gas phase. The spin-polarization was ap-
plied in the calculation of O2. The reaction energy change was 
calculated by using the energy of the species with the optimized 
structure. 
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