Just Accepted Articles have been posted online after technical editing and typesetting for immediate view. The final edited version with page numbers will appear in the Current Issue soon.
CO2 reduction; Single-atom; Metal-organic frameworks; Prphyrin; Precise chemistry
ABSTRACT
The catalytic performance of single-atom catalysts in CO2 photoreduction can be optimized through precise modulation of the coordination structures of single-atoms. In this study, Ru single-atoms (Ru-SAs) immobilized on the Zr6O8 clusters of a porphyrinic metal–organic framework (Zn-PCN-222) were modified with sulfhydryl groups (–SH). The resulting RuS-SAs@Zn-PCN-222 exhibited high photocatalytic activity for CO2 reduction to HCOO− using ammonia borane as the H* donor, giving rise to a HCOO− production rate of 54.4 mmol·g–1·h–1 with 99.9% selectivity, which was approximately 20.1 and 4.5 times higher than that of Zn-PCN-222 and –SH-free Ru-SAs@Zn-PCN-222, respectively. Photoelectrochemical measurements demonstrated that the incorporated RuS-SAs enhanced the separation and migration of photogenerated charges in RuS-SAs@Zn-PCN-222. Further in situ experiments revealed that the RuS-SAs could accept photogenerated electrons from Zn-PCN-222 as well as electrons from the –SH groups, and then inject to inert CO2 molecules, thereby facilitating CO2 activation and its subsequent coupling with H* to form HCOO−.