Hydrogen-bonded organic frameworks (HOFs) represent an innovative category of crystalline porous materials, formed through the self-assembly of organic building blocks via intermolecular hydrogen bonds, along with supplementary interactions such as π-π stacking and van der Waals forces. The relatively weak nature of hydrogen bonding endows HOFs with remarkable structural flexibility and a wide range of functional potential. Among them, luminescent HOFs (LHOFs) not only preserve the inherent luminescent properties of their organic fluorophore components but also exhibit key features characteristic of HOF materials, including porosity, recyclability, solution processability, and exceptional biocompatibility. This review outlines the design principles of LHOFs and explores their most recent applications, such as in sensing, bioimaging, and white-light emission. Lastly, we discuss current challenges and provide an outlook on future research directions in this field.